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Abstract

The nonlinear integral equatid®(x) = ff dyw(y) P(y) P(x+y) is investigated. It is shown
that for a given functiorw(x) the equation admits an infinite set of polynomial solutions
P(x). For polynomial solutions, this nonlinear integral eqoatreduces to a finite set of
coupled linear algebraic equations for the coefficienthefpgolynomials. Interestingly, the
set of polynomial solutions is orthogonal with respect te theasure&w(x). The nonlinear
integral equation can be used to specify all orthogonalmmiyials in a simple and compact
way. This integral equation provides a natural vehicle fderding the theory of orthogonal
polynomials into the complex domain. Generalizations efittiegral equation are discussed.
Finally, it is observed that since the integral equationnidependent of the degree of the
polynomials it may possibly be a useful tool in determiningl astudying the asymptotic
behaviors of polynomials.

1 Introduction

The work reported here is a review (in Secs. 1 and 2) of thearekaeported in Ref. [1], where it
is shown that any class of orthogonal polynomials can betageied by using a nonlinear integral
equation. Section 3 describes new work in which we show hous®this integral equation to
examine the asymptotic properties of the polynomials.

Let us begin by recalling that there are many ways to spec#gt af orthogonal polynomials.
We mention two completely general methods below:

¢ We can specify the domaim, ) and the measuigx) with respect to which the polynomials
are orthogonal. We then can use the well known Gram-Schmikbgonalization procedure to
determine the polynomials sequentially. For example, erdtbmain(—1,1) and for the measure
g(x) = (1—x?)~%2, the Gram-Schmidt procedure yields the Chebyshev polyalsiTj(x):
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Ti(x) = X,
To(x) 2¢ —1,
Ta(x) = 43 -3

and so on.
¢ We can use a recursion relation. For example, if we take

along with the initial conditiongp(x) = 1 andT;(X) = X, we again obtain the Chebyshev polyno-

mials T (X).

Other methods to construct or specify a set of orthogonalr@ohials can also be used. The
following two methods do not have a general applicability:

e The classical orthogonal polynomials [2, 3, 4] obey a défaial-equation eigenvalue prob-
lem (a Sturm-Liouville problem). For example, the diffetiahequation

(1—x)y" () =Xy () +1°y(x) =0

along with appropriate boundary conditionsxat —1 andx = 1 leads to the Chebyshev polyno-
mials T,(x) once again. Of course, it is unusual to find that a set of paohjals obey a differential
equation. For example, the Krawtchouk, Charlier, Meixaed Hahn polynomials satisfy differ-
ence equations but not differential equations [5].

¢ We can introduce a generating functi@Gix,t) for polynomials. If the generating function is
expanded as a Taylor series in powers, die coefficients are polynomials ¥ For example, the
generating function

1—xt l
G(X,t) - m - %Tn(X)tn

reproduces the Chebyshev polynomi@lgx). Of course, this method is again not general be-
cause there is no procedure for predicting when a given géngrfunction will in fact produce
orthogonal polynomials.

The new method described in this paper for constructingogrhal polynomials is general and
makes use of the following nonlinear integral equation:

B
POO = [ dyw(y) P(y)P(c+Y), @y

where the functionwv(x) satisfies the constraint

/dew(x) —1 (1.2)

We find that thenth degree polynomial solution,(x) to this integral equation are orthogonal
with respect to the measure

9(X) = XW(X). (1.3)
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The proof of orthogonality following (1.8) requires thatx) satisfy some rather weak conditions:
The moments ofv(x) must all exist and the determinant of the maBjxin (1.9) must not vanish.
Note that it is sufficient thatw(x) be integrable and positive almost everywhere.

To find the polynomial solutions to this integral equatior simply substitute a polynomial of
degreen,

Pa(x) = 3 ankxX’, (1.4)
k=0

in which the coefficientsy,x are arbitrary, into the integral equation (1.1). We thervedhe
resulting algebraic equations for the coefficients. No&t e polynomial of degree= 0, Py(x) =
1, already solves the integral equation by virtue of the trairg (1.2).

To demonstrate the procedure we introduce the followingtiaot:

B
(1= [ dywy)f() (L5)

a

Let us now see how to solve for the orthogonal polynomials@one low-degree cases.
Example:SubstituteP; (x), whereP; (x) = a; 0 + a1,1X, into the integral equation (1.1). We obtain
the equation

aro+ay1x= (Pu(y) [ar,0 +ar1y +ag1x)).

Then, matching coefficients of powersofives a system of two linear equations for the coeffi-
cientsP;:

Px) = 1,
(xPi(x)) = 0. (1.6)

Example: SubstituteP,(x), wherePs(x) = ap o+ ag1X+ a272x2, into the integral equation (1.1).
The result is

a0+ ap1X+ 82X = (Pa(y) [@z0 + @21 (X+Y) + 822 + 2xy+Y?)] ).

Matching coefficients of powers ofgives a system of three linear equations for the coefficients
of P,:

(P(x) = 1,
(XPe(x)) = 0,
(Py(x)) = O. (1.7)

The general pattern for the casenth degree polynomials is now obvious. If we substitute
Pa(x) in (1.4) into the integral equation (1.1) and match coeffitseof powers ok, we obtain the
following system ofn+ 1 linear equations:

XPh(x)) =&o (k=0,1,...,n). (1.8)

Equations (1.6) and (1.7) are special cases of this equiation= 1 andn = 2.
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Cramer’s rule tells us that the linear inhomogeneous adgelsystem (1.8) has a unique solu-
tion. Thus, while the nonlinear integral equation (1.1) @dran infinite set of polynomial solu-
tions, the set of polynomials is unique. Thus, for eagk) there is only one polynomial solution
of degreen.

The system of algebraic equations (1.8) can be used to aohatguick proof of orthogonality:

(XRPn) = g amk (XTI Py(X))
=

m+1
= Y ank-1(XP(X)
k=1

= 0,

where we have used (1.8) explicitly feke=0,1,2,...,n— 1.
Let us now display the explicit form of the polynomial sotuts P,(x). We define the moment
notationm, = (X"). Then, for alln we have

detA,
P _ =" 1.9
I"I(X) detBn’ ( )
where the matrice8,, andB, are given by
1 X ... X
A=| - P i (1.10)
My Mmyy -0 My
and
Bo=| . . (1.11)
My Mmyy -0 My

The first three polynomials are given explicitly as

Po(X) = 1
Mp — XMy
Pl(x) = W’
Py = (MeMu—ME) & (Moa—Mmy)x-+ (Mms—Mm)xé.

my(mp — MY) — Mg+ 2my e — M3

Note that the polynomial formula in (1.9) is precisely whakeoobtains if one is given the
measurgy(x) and one then uses the Gram-Schmidt orthogonalization guoee This shows that
the nonlinear integral equation (1.1) is equivalent to tihen®Schmidt procedure. The noteworthy
feature of the nonlinear integral equation is that it is peledent of the degreeof the polynomial;
all polynomials, regardless of their degree, satisfy the nalegguation. Technically speaking, the
Gram-Schmidt procedure is an iterative technique in whigh oalculates the polynomials in
order of increasing degrd®, P;, P, and so on, where each new polynomial is orthogonal to all
previously found polynomials. When one uses the nonlinetagral equation (1.1), one simply
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specifies the degree of the required polynomial and therrrd@tes it directly without knowing
the other polynomials. However, since the final formula far polynomials is unique, one must
regard the integral equation as being equivalent to the €&3ahmidt procedure.

Example: To illustrate the construction of a set of orthogonal polwnas, let us choose = 0
andB = 1 and take the functiow(x) to have the general fornd 4 x°. Then the condition in (1.2)
implies thatab= 1. For these choices we obtain a complicated-looking omarpeter family of

orthogonal polynomials whose coefficients are palindromic
Pox) = 1,
(a+2)(2a+1) 4 3
Pi(x) = 2a'+17a
1% = 101 20"+ 1087+ 200+ 10a 1120 T
+34a% + 17a+ 2 — x(3a* + 22a° + 468 + 22a + 3)).

An interesting question to ask is, What happensv(k) = g(x)/x is singular at the origin
x =07 This at first appears to be a serious problem, but in factéahgion is elementary. We
simply choose the path of integration in the integral equmfl.1) to avoid the origin!

Example:Consider the case of Legendre polynomials. For these poligiea = -1, =1, and
g(x) is a constant. There are infinitely many topologically distiintegration paths connecting
—1to 1, where the paths are characterized by their windingbausn For definiteness, choose a
path that runs from-1 to 1 in the positive (counterclockwise) direction and doesencircle the
origin. On this path/ dx/x = im. Thus, to maintain the normalization conditigfﬁdxw(x) =1
we usew(x) = 1/(irx). The momentsn, = (X") aremy =1, m = 2/(im), mp = 0, mg = 2/(3im).
The first four polynomials are

Pox) = 1,

Pi(x) = %Tx,

P(x) = 1-3¢
Py(x) = 3%”(3x—5x3).

These are precisely the Legendre polynomials with an uhoseaall multiplicative normalization
factor — every other polynomial contains a multiplicatiaetor ofi. Note that these polynomials
are symmetric under the combined reflections

X — =X

i — i (1.12)
This symmetry has been heavily studied by mathematicaligisis and is known as”? .7 sym-

metry [6, 7]. Of course, the notion of polynomials on comptextours is not new and has been
examined in the past by many mathematicians; see, for examRpfs. [8, 9].

2 Other nonlinear integral equations having polynomial solutions

There are many other kinds of nonlinear integral equatiansniy polynomial solutions. For
example, one can havenaultiplicativerather than an additive argument; that is, one can replace
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P(x+Y) in the nonlinear integral equation (1.1) Byxy):

B
POO = [ dyw(y) P(y) POxy). @Y
If we now substituteP,(x) = Th_yank X, we get

ank(XPn(X)) = ank (k=0,1,...,n).

Unlike the previous case, these equationscmradraticand there are now"2?® solutions because
each coefficiend, x can be either zero or nonzero foe=0,...,n—1.

We find that for one special class of solutions all of the coieffits are nonzero and the poly-
nomials are orthogonal with respect to the measure

9(x) = (1=x)wW(x).
Here are some additional examples of nonlinear integradtians that have a particularly rich
and interesting structure:

Example:ReplaceP(x+y) in the nonlinear integral equation (1.1) Byx+ a+ by):

B
POO = [ dyw(y) P(y)P(x+a+by).

Example:ReplaceP(x+y) in the nonlinear integral equation (1.1) Byx+ f(y)], wheref is an
arbitrary function:

B
PO) = | dywly)P(y) Plx+ (y)).

a

Example:ReplaceP(y) in (1.1) by f[P(y)], wheref is an arbitrary function:

B
P = [ dywy) fIPW)IPX+Y)

3 Application: asymptotic behavior of polynomials

Because the nonlinear integral equation (1.1) does noauottie degree of the polynomial solu-
tions explicitly, itis easy to use this integral equatiorstiady the asymptotic behavior of classes of
polynomials. We illustrate this by deriving asymptotic pecties of some classical polynomials.

Example:The Laguerre polynomialsh(x) are orthogonal on intervaD, «) with respect to mea-
sure

g(x) =x'e”*/F(y). 3.1
Thus, from (1.1) we know that thaeth Laguerre polynomial satisfies the following nonlineaein
gral equation:

1

K00 = 7 ) vyt L), (32)
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It is well known that the asymptotic behavior of the Lagugrodynomials for large degree is
given by [10]

lim n™YLn(x/n) = xY/23,(2/%). (3.3)

n—oo

It is easy to verify this asymptotic behavior directly byngithe integral equation (3.2). We
simply scale all the arguments in (3.2) byand multiply both sides bg:

1 ,/x 1 = iyl Y\ 1, Xty
() = — 1 y/n y 2J
nVL”<n) r(y)/o dyy™'e v (n) nVL”< n >

Next, we take the limih — c and substitute the limiting behavior of the Laguerre potyrad
given in (3.3). We obtain the following integral identityilving Bessel functions:

x¥23,2v%) = %/omdy}/ypl‘]y(z\/y)(x‘i‘wY/ZJV(ZVX‘f'y)-

This identity transforms to a standard identity that candamél in Gradsteyn and Ryzhik [10]:
J © Ju(v/ 2 2
2z r(y)Jo w <\/m>

Here is a second example involving Jacobi polynomials:

Example: The Jacobi polynomialBy P (x) are orthogonal on the intervah1,1) with respect to
measure

(1-x)(1+x)°

9 = % PBa B+ 1)’ (3:5)
Thenth Jacobi polynomial satisfies theultiplicativeintegral equation (2.1):
o800 = 2 [ ay(1y) L4y PR ()REL ). @6)
B(a,B+n+1)/ 1 . :
It is known that the asymptotic behavior of the Jacobi potygiads for largef is given by [10]
guan pa-p (1— %X> =L9(x). (3.7)

Let us perform the asymptotic limit of the integral equati®%6). To do so, we make the
change of variables — 1—2x/3 andy — 1—2y/[3:

a,B _2_X _ ,ar(a+B+n+1)
i (1 B) = P e nty

Lo (- y ) (3) )

Next, we take the limi3 — oo;

800 = g7 o O IeLE L k) @9)
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Observe that this is precisely the nonlinear integral égndB.2) satisfied by the Laguerre poly-
nomials!

These examples show that the nonlinear integral equatidhi€lextremely useful in elucidat-
ing the properties of known orthogonal polynomials. We hthja it can also be used to discover
new and interesting classes of orthogonal polynomials.
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